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ABSTRACT

Experimentally, thermal annealing is known to be a factor which enables a number

of different integrated circuits (ICs) to recover their operating characteristics after

suffering radiation damage in the space radiation environment, and thus to decrease

and limit long-term cumulative total-dose effects. This annealing is also known to be

accelerated at elevated temperatures both during and after irradiation.

We have applied linear response theory (LRT) and have constructed a linear response

function (LRF) to predict the radiation/annealing response of sensitive parameters of

ICs for long-term (several months or years) exposure to the space radiation
environment.

In order to develop a short-term (several hours or days) test procedure for predicting

long-term annealing, a number of LRF constants in this theoretical model must be

determined. Several methods to calculate the LRF constants from the experimental

data have been used. Equations for the shift in the threshold potential of MOS ICs

have been derived for both pure annealing and simultaneous irradiation and

annealing. Estimations of the equilibrium point of the shift in the threshold

potential have been made.

Since we need to conduct a short-term test to make predictions of the radiation

response for the very long-term region of the IC's operation, a compression in time

was proposed. Compressing the annealing process from several years in orbit to just

a few hours or days in the laboratory is achieved by subjecting the IC to elevated

temperatures or by increasing the typical spaceflight dose rate by several orders of

magnitude for simultaneous radiation/annealing only.

The development of tests at elevated temperatures was based on linear response

theory and theoretical models in order to use data extrapolation from the elevated

temperatures to near-room temperature. To use LRT, we need to check the linearity

of the response with respect to impulse dose for pure annealing and with respect to

dose rate for simultaneous irradiation and annealing. This approach became a part

of the test development.

The test procedure to make predictions of the radiation response was developed; the

calculation of the shift in the threshold potential due to the charge distribution in the

oxide was written; electron tunneling processes from the bulk Si to the oxide region in

an MOS IC were estimated; in order to connect the experimental annealing data to

the theoretical model, constants of the model of the basic annealing process were

established; experimental data obtained at elevated temperatures were analyzed;

time compression and reliability of predictions for the long-term region were shown;

a method to compress test time and to make predictions of response for the non-linear

region was proposed; non-linearity of the LRF with respect to log(t) was calculated

theoretically from a model.
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INTRODUCTION

This work deals with the development of a test to predict the radiation/annnealing

response in sensitive parameters of ICs in long-term operation in a radiation

environment.

Semiconductor ICs installed in electronics, computers and other systems of

spacecraft, nuclear power installations (submarines in particular) and particle

accelerators suffer total-dose, slow-rate radiation damage, which usually appears as

a change in operating characteristics. Although total-dose radiation damage is

cumulative, in the slow-rate radiation environment, such as in space, nuclear power

installations and particle accelerators, annealing has been observed to occur in many

IC technologies. After some time in the radiation environment, it is expected that a

situation will be reached in which the annealing rate will match the damage

introduction rate and will result in stability of the shift in the sensitive parameter,

for example, in the threshold potential for MOS ICs. For the'electronics to be

operational after this time in the radiation environment, it is necessary to determine

whether or not the parameters of the device are still within specifications.

Flight projects and equipment designers are consequently asking how much

annealing can be expected to extend the operating time of ICs and other devices for

long-term use in radiation environments in space and on Earth. An easy way to

answer these questions would be to allow the damaged devices to anneal for two or

three years at room temperature and observe the results of annealing. Such tests,

however, would be time-consuming and impractical.

Yet, the problem is still not solved, although constant attempts have been made to
choose the most radiation-resistant devices and to choose such a technology in a

short-time test. Hence, a number of tests have been proposed18-21.

1. Such a test18 has been performed: a detailed comparison of 1/f noise with the

radiation-induced threshold voltage shifts due to oxide-trapped charge and interface

states for enhancement-mode, 3-nm gate, n-channel MOS transistors. It was shown

that the pre-radiation 1/f noise levels of these devices correlated strongly with the

post-radiation threshold shift component and was related to the oxide traps, AVot, but

not with the post-radiation shift component related to the interface states, AVit.

These results are supposed to show that 1/f noise measurements may prove useful in

characterizing and predicting the response of MOS devices.

This test cannot give correlations of the pre-radiation 1/f nose with the post-radiation

AVit which is one of the components of the radiation-induced shift in the threshold

potential. The problem of long-term prediction of the radiation-induced shift in the

threshold is not approached.

2. In the second workl9, a simple model was suggested to interpret and to extrapolate

the experimental data by fitting the data to the model.
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This investigation suggests a test procedure, using a simple linear dependence on

log(t) of annealing, which does not work for the long-term period. Also, this test

procedure consumes as much time as a simple long-term experimental test, because

annealing in this test was not accelerated.

3. The third and fourth tests 20-21 that were proposed used a compression of time by

using elevated temperatures. These completely empirical tests could only classify

the MOS devices into particular groups. Their main goal is to predict the grade of

radiation hardness of a device, but not the value of the radiation-induced shift in the

threshold potential or the shift in other sensitive parameters.

A number of tests suggest simply applying an increased dose rate, i.e., to irradiate a

device to the total required dose in a short time, but a difference between prediction

and response has been observed.

We are going to make predictions, for example, of the shift in the threshold potential,

by applying the LRT. We are determining the region of linearity of the response

relative to an impulse dose for pure annealing and the linearity of the radiation

response relative to the dose rate for simultaneous radiation and annealing. For the

linear region, the LRT will be used as the principal tool and the damaged devices will

be subjected to elevated temperatures to accelerate the annealing. This method was

proposed to shorten the time period of the tests and to use the results of these tests to

predict the anticipated long-term annealing.

These short-term (several hours or days) test procedures for making predictions for

long-term (several months or years) radiation/annealing response of ICs in a

radiation environment were developed for linear and non-linear response'relative to

dose rate. For the non-linear region, the method of increasing the dose rate to shorten

the test time was proposed. Also, the quasi-linear approach to calculate a prediction

of response was introduced for non-linear cases.

Calculations were made to predict when the simultaneous irradiation/annealing can

be expected to reach an equilibrium. The maximum value of the shift in the

threshold potential, V(t), (equilibrium value) was estimated. Experimental data

were treated according to the LRT and results produced the LRF shape and time

compression rate for the long-term region. The shift in the threshold potential was

introduced by calculating the electric field distribution in relation to the charge

distribution in the bulk oxide. The deviation of the LRF from linear dependence on

log(t) was derived theoretically from the model. We also observed cases of high-dose-

rate radiation damage and a high-dose impulse radiation environment, where

linearity of radiation response relative to dose and dose rate does not exist. To make

predictions of the malfunctioning of ICs in this case, a time compression of the test by

increasing the dose rate was proposed.
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THEORETICAL MODEL

LINEAR RESPONSE MODEL

The Concept of Impulse Dose and Impulse Response

According to linear response theory (LRT), radiation response, i.e., shift in the

sensitive parameter, of any device subjected to a radiation environment is linearly

proportional to an impulse dose, if this impulse dose is small and the instant of

measurement of the response is far removed in time from the instant of the impulse

dose, as in Fig.l:

AP(t) = R(t)AD, (1)

where the linear response function (LRF), R(t), depends on a time lapse:

AP(t) = R(t-t')D(t')

and the LRF, R(t), can be determined to be:

R(t) = AP/AD.

To determine the region of linearity, one has to plot AP measured at a fixed instant, t,

as a function of AD, as shown in Fig.2.

In this work, we have used linear response theory to solve both cas'es of pure

annealing (from impulse and non-impulse doses) and simultaneous irradiation and

annealing. Since we are applying LRT, i.e., a linear approach, to experimental data

during the test, the concept of impulse dose is crucial for our work. The calculations

of threshold potential as the main sensitive parameter for MOS devices for both pure

annealing and simultaneous irradiation and annealing are essential. Calculations

will determine whether the concept of impulse dose can give us:

1. The practical time duration of the impulse dose and

2. The limit of radiation dose magnitude.

Some simple transformation would be helpful. The shift in the main MOS IC

parameter, the threshold potential can be determined from linear response theory as

shown below:

.tr o t

AV(t) = D IR(t-j) dj = -DfR(t')dt',

0 t-tr
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where the dose rate, D = const, and R(t) is the linear response function.

transformation yields the threshold shift calculation,

Such a

t
@

AV(t) = D[F(t)- F(t-tr)], where F(t) = SR(t')dt.
0

Expanding the equation for the response shift in a Taylor power series for small

irradiation time, tr and using the equation for the linear response function,

R(t) = -C + A In(t/to),

we then obtain:

AV(t)/D(tr) = -C + A In(tr/t0)+ K + T,

where T = (A/2)tr/t and K = A(t0]tr)(t - tr)/t0.

We can then calculate the conditions for choosing the observation time, t, and the

irradiation time, tr, such that the dose response is linear. Knowing that tr<t, T/K

= t2r/2t2. Let us set this expression equal to 1/100. This means that, in the

expression involving the observation time, t, and the irradiation time, tr, the

deviation of response from linearity in log(t), T, has the value of 1/100 of the second

term of the expansion, therefore tr/t should be less than 1/7, i.e., on the order of 1/10.

The concept of impulse dose and the condition of linearity are sources of the method

for determining the linear response function from experimental data for the linear

case. The method to determine the limit of radiation dose magnitude from the

experimental data is shown in Fig.2.

Using this basic concept, we can obtain experimental data to investigated the critical

region of time dependence of the radiation damage response during which

equilibrium between the radiation damage rate and annealing rate occurs., In this

area, the linear response function, as will be shown, changes its character, and to

make predictions for long-term operation (from several months to a few years), we

must determine the Linear Response Function for long-term annealing,, using

experimental data.

The linear response theory for the case of pure annealing, as well as simultaneous

irradiation and annealing, will be directly applicable to spacecraft flown in the space

radiation environment, where both radiation damage and annealing take place at the

same time.
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In the case of non-linear response, an approach to solve the problem will be shown

below.

1. Pure annealing in MOS devices

Much work has been done in the area of radiation or radiation sensitivity of MOS Its.

Some work has been done on pure annealing and very little, if any, has been done on

the simultaneous radiation and annealing response.

Linear response theory presumes that the annealing of a sensitive parameter is

linearly proportional to the imparted impulse radiation dose and depends on the time

lapse between the observation time and the time of the imparted impulse dose, as

shown in Fig.1.

There are several sensitive parameters of a MOS integrated circuit which can be used

to measure damage and annealing, such as the shift in the threshold potential, AV(t),

of individual transistors, leakage currents, propagation delay, rise and fall times, etc.

Since the device parameter, the shift in the threshold potential, expressed as Av(t), is

most often used as the sensitive parameter, we choose to use this parameter in our

measurements of annealing. Eq.(1) thus becomes

AV = R(t-t')AD(t'). (2)

In the case of many impulse doses, the total annealing response is the result of the

sum of the partial response. In the case of continuous irradiation, this becomes an

integral

t

AV(t) = fR(t-t')dD(t'). (3)

0

1.1 Determination of Response Function

In the case of pure annealing, we shall use Eq.(2) to determine R(t). For this purpose,

we set t' = O. Then

AV(t) = R(t)AD(0),

and the response function becomes

R(t) = AV(t)/AD(0),

which turns out to be the remainder of the gate threshold voltage shift per unit dose

at time, t, far removed from the impulse dose, i.e., t'< <t.

Pure annealing has been observed by several investigators to be nearly linear with

respect to the logarithm of annealing time. Danchenko at al.1 observed a linear or
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near-linear dependence on log(t) of annealing in a pMOS device. A similar log(t)

dependence for other technologies was observed by Simons and Hughes2.3 and

Simons4. The only deviations from this linear dependence are observed at very short

and very long annealing times.

These experimental data show that R(t) plotted vs. ln(t) follows a near-straight line.

Under this assumption, for pure annealing, R(t) takes the form:

R(t) = -C + A In(t)

where the coefficients A and C are regarded as independent of impulse dose and

should be determined experimentally.

To render the argument of R(t) dimensionless, it is necessary to introduce another

parameter, the characteristic time, to, which is related to the annealing rate. The

response function thus becomes

R(t) = -C + A In(t/to). (6)

To find the significance of the constants A, C and to, we have plotted R(t) (as given by

Eq.(6)) vs. In(t), as shown in Fig.3. To separate the constants from In(t), we have

transformed this equation as follows:

R(t) = [-C-A In(t0)] + A In(t).

As can be seen from Fig.3, the region to< <t<te represents a straight line in R(t). If

we extrapolate this straight line to ln(t) = 0, we see that it intercepts the ordinate at

[-C - A ln(to)]. We can determine A immediately, since it is the slope of a straight

line. C and to, however, cannot be separately determined, because they are factors of

the intercept, [-C - A ln(to)]. A few methods exist to find C and to. To find C, one can

measure the response at t< <to and obtain

R(t) = AV(t)/AD = C-al(t/to) + a2(t/to) 2 + ...

To make the function valid in the region of small t,we can change the argument of

Eq.(6) as follows:

R(t) = -C + A ln(1 + t/to). (7)

We can plot this equation for small t. We can see that, as t approaches zero, ln(t)

approaches minus infinity and R(t) approaches (-C).

For large t, we can estimate at what time annealing will be nearly complete. When

we extrapolate the linear region ofthe curve in Fig.3 to R(t) = AV/AD = 0, we obtain

a rough estimate of the critical time, to, given by:

-C + A In(to/to) = 0, or t¢ = to exp(C/A). (8)
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This estimate of to is valid for pure annealing, as well as for simultaneous irradiation

and annealing, as we will see below.

We also need to determine at what time the straight line of R(t) (Fig.2) intercepts the

straight line of(-C). We can immediately determine this time, t = to, and R = R(to) -

(-C) = A ln(2).

1.2 Generalized Convolution Integral.

Response to continuous irradiation can be described as a sum of responses to a

number of impulse doses. Such a response can be calculated as an integral:

t

hP(t) = SR(t-t')I)dt'.

0

If the radiation ceases at time, tr < t, then

tr •

hP(t) = fR(t-t')Ddt'.

0

Iftr< <t, then t'< <t and R(t-t') = R(t). Then:

tr.
hP(t) = R(t)YDdt;, or

0

AP(t) = R(t)D(tr). In other words, for t> >tr, the total dose, D(tr), may be regarded as

an impulse dose.

Using the gate threshold potential as a sensitive parameter, and assuming that the

total imparted dose is not an impulse dose, but is extended in time, we can derive the

same equation, integrating Eq.(2) over the period of time in which irradiation occurs.

We thereby obtain the same convolution integral in the form:

tr

5V(t) = .rR(t-t')Ddt',

0

where tr is the time at which irradiation ceases.

In the case ofpure annealing, tr is always less than t. Iftr< <t, then Eq.(9) takes the
form:

5V(t) = R(t)D(tr), (10)

Page 9



which is similar to Eq.(2) and gives us the response function as the shift in threshold

potential per unit total dose.

2. Simultaneous Irradiation and Annealing

As has been shown, calculations developed for pure annealing can also be applied to

simultaneous irradiation/annealing with some modification if the linearity of

radiation response relative to dose rate (or accumulated dose) exists.

21. The linearity of Response Relative to Dose Rate

During long-term spaceflight, the irradiation/annealing response of a device in the

space radiation environment could become non-linear. To make 15i'edictions correctly,

we need to determine the region of linear response with respect to dose rate for long

times, as in Fig.4.

We can find the slope in Fig.4: AP = D x Slope; t is large and

t

Slope = SR(t')dt'.
0

This relation and determination of linearity of the response with respect to dose rate

will be used in the test procedure.
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2.2 Calculations of Response

Derbenwick and Sander5 were the first to suggest the applicability of linear response

theory to annealing through the use of a convolution integral. Winokur et al.6,8 have

also made extensive use of a convolution integral in their analysis of experimental

data. The authors applied the convolution theory to calculate the radiation-induced

voltage shifts for a uniform dose rate:

-AV(t) = Bt{-A[x In(x/x-I) + In(x-l)] + (A + C)},

where x = t/te, B is equal to a constant dose rate and A is the annealing rate. In this

equation, they explained the time, t, as the time at which the measurement is taken

and the time, te, as the time of termination of the radiation exposure at a constant

dose rate.

Applying a convolution integral, we set the time of cessation of irradiation, tr, equal

to the time of observation, t, in Eq.(9), which yields:

AV(t) = fR(t-t')Ddt'. (11)

0

In order to find an expression for the threshold potential shift, AV(t), we substitute

Eq.(7) into Eq.(ll). Integrating Eq.(ll), we obtain:

AV(t) = [A(1 + to/t)ln(1 + t/t0)-(A + C)Dt, (12)

B

where D is assumed to be constant with respect to time.

For t> >to, Eq.(12) becomes:

hV(t) = [A In(t/to)-(A + C)]D(t), (13)

where the total dose, D(t), is equal to Dt, or:

[AV] = I)t[A + C-A In(t)]. (13')

AV(t) and AV(t)fl)t expressed in Eqs.(12), (13) and (13;) are plotted vs. ln(t) in Fig.5

and Fig.6 for arbitrary values of the constants.

It is anticipated that in space (and in similar radiation environments), as the damage

accumulates, a time will be reached when the damage introduction rate will be

balanced by the annealing rate and the threshold potential will reach stability. This

region ofbalance is shown in Fig.5 for large t.
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A useful approach to treat the experimental data of very long-term simultaneous

irradiation and annealing is to plot AV(t) per unit dose, instead of AV(t). In Fig.6, we

plot AV(t)/D(t) vs. ln(t). Indeed, we see that, for large t, we have a straight line, in

accordance with Eq.(13), plotted as:

AV(t)/D(T) = A In(t/to)-(A + C). (14)

We have the experimental evidence to prove such a conclusion. Curves of

simultaneous irradiation and annealing from experimental work26 with

supplemented _straight line" curves of AV/D calculated from these experimental data

are shown in Figs. 24 and 25.

In time, however, we should see some deviation from this straight line, as in the case

of pure annealing. This region of deviation, td, is important for the treatment of

experimental data, because this is the region to which the saturation of the damage

or the balance between the damage introduction rate and annealing rate is very

close. In the laboratory, we can investigate this region experimentally, since, at

elevated temperatures, the deviation can be observed in a short time. We

consequently have to investigate this region in detail.

The straight line of Fig.6, plotted vs. In(t), intercepts the hV(t)/D(t) = 0 axis either at

ln(t/to) = C/A + 1, or explicitly at the critical time

tc = to exp(C/A + 1). (15)

This is a good approximation of the region in which the deviation occurs. In reality,

however, we may expect the deviation to take place before this approximation, or

before the minimum of Eq.(12). This minimum is given by

d[AV(t)]/dt = A In(t/to)-C = 0. (16)

This yields as a solution, tb = tO exp(C/A), which is identical to Eq.(8). This implies

that tb is both the critical time for pure annealing and the theoretical equilibrium

time, tb, when balance between the damage introduction rate and the annealing rate

occurs. Substituting tb into Eq.(13), we obtain AV(tb) = AVm, which is the maximum

value of AV(t):

AV = -ADtb = -AI)toexp (C/A). (17)

We can also determine another characteristic time, the time for half recovery, tl/2,

from Eq.(6) for pure annealing:.

tl/2 = to exp(C/2A), (18)

which is convenient for the treatment of experimental data.
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PREDICTION OF LONG-TERM IRRADIATION/ANNEALING RESPONSE

The long-term irradiation]annealing response (from several months to a few years) is

related to the region which includes td or close to it. For this long-term region,the

ease of non-linearity of radiation response relative to dose rate can be predicted by

shortening the time duration of the test with increasing dose rate, D.

We can increase the dose rate by three orders of magnitude and shorten the time

duration by the same factor and have close to the same value of the response. From

the family of response curves shown in Fig.7, we can extrapolate the value of the time

of deviation for flight conditions and time compression rate for a flight dose rate, as in

Fig.8.

In Figs.8 and 10, the method to make predictions of the radiation response from data

extrapolation is shown. Using the time deviation determined from the extrapolation

described in Fig.7, we can calculate the time compression rate relative to the
increased dose rate.

HIGH-DOSE IRRADIATION CASE

There is a wealth of experimental works which support the linear response theory

and indicate that the differential response is linear with impulse dose. However, any

physical system can exhibit a linear response only through a limited range of input.

Obviously, the shock to a system by a strong input is non-linear, especially when the

system is destroyed.

Although it is obvious that linear response theory cannot be applied for large dose

rates or doses, there have so far been no attempts to determine the limits of dose or

dose rate within which the system still exhibits a linear (with dose) response.

A number of projects strongly need the theoretical foundation and experimental

research which we propose here. Such a theoretical investigation can be used to find

the region of applicability of the linear response theory (LRT) as well as to develop a

generalized response theory (GRT). It seems promising that such a generalized

response theory can become the necessary tool, not only for the treatment of large

total doses and dose rates, but also for the case of low-dose irradiation in the region of

balance, when the damage introduction rate is equal or nearly equal to the rate of

annealing.

As is known from the previous part, Eq.(1) states the experimental fact that the

differential response is proportional to an impulse dose. By increasing the impulse

dose, we step to the case in which the response becomes proportional to some function

of dose, D, rather than the dose itself:
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(Change in sensitive parameter) = R(t-t') F(D(t'}). (H1)

In the case ofMOS ICs, this looks like

AV(t.,D) = R(t-t;)F(D(t')). (H2)

For a single impulse dose, it is convenient to set t' = 0. Then Eq.(H2) becomes

AV(t, D) = R(t) F(D). (H3)

For a fixed dose, D, one can determine R(t) as

R(t) = AV(t, D)/F(D). (H4)

To determine the exact value of F(D), one must impose the condition that, at the

small-dose limit, F/D approaches unity.

To determine the response for continuous irradiation, one must integrate Eq.(H2)

over the irradiation time, tr,

or

tr

AV(t, D) = SR(t-t') dF(D(t')),

0

r _

AV(t, D) = SR(t-t') F'(D) dD(t') = R(t) F(D(tr)).

0

(H5)

(H6)

For the case in which the observation time, t, is far removed from the end of

irradiation, i.e., t:> >tr, R(t-t') = R(t), and Eq.(H5) yields

tr

AV(t, D) = R(t)$dF(D) = R(t)F(D(tr)).

0

(HT)

Since the response, AV(t, D), is a product of two functions, each dependent on its own

variables, both the functions R(t) and F(D) can be determined. Then the response is

totally described by Eq.(H5).
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THEORETICAL APPROACH TO THE MODEL

The theoretical models13-16 of basic internal processes in ICs, especially MOS ICs,

developed by various authors, were used to work out the common theoretical base of

the damage/annealing test. We will use these models of basic processes contributing

to the radiation response and annealing, and, consequently, to the various constants

of the LRF and their time-temperature dependence, especially the intensity of

annealing, A, to develop a link between the macroscopic (and phenomenological) LRT

approach, and microscopic processes. The schematic review of such basic processes

and, in particular, the annealing process of charge buildup is shown in Figs.11 and
12.

From experimental data, we also know that, in the long-term region, the shift in the

threshold potential changes its behavior. Thus, we see some deviation from a

straight line,i.e., the form of the previously-developed LRF vs. ln(t). We can use the

annealing data ofthis region of deviation (i.e., the long-term region) to determine the

LRF constants for this region to treat annealing test data at elevated temperatures,

as was previously shown, and to convert these data to normal temperatures for

making predictions of the long-term radiation/annealing response for long-term

operation. In order to make such an approach reliable, calculations of temperature

dependence of LRF constants in the long-term region through theoretical models of

the processes in the bulk oxide are essential.

From the experimental and theoretical works22,23, which are consistent with each

other, it is known that the basic model of the positive hole trap refers to the trap

structure as a neutral center in the oxide with a ground state (singlet) below the Si

valence band edge and an excited triplet state above the Si conduction band edge, as

is shown in Fig.13.

Annealing in these models is considered to be tunneling of electrons directly from the

bulk Si to the charged hole trap in the oxide. The formulation of this problem

corresponds to the ease in which a current of electrons is incident on the potential
barrier.

The problem is related to the problem of determination of the probability of tunneling

of electrons into the bulk oxide. Assuming electrons are being transported through

the Si-SiO2 interface from the Si valence band to the ground state of the hole trap

center, as the best-known model of McLean indicates, we can write

Ptun = a exp(-bx),

where a is the escape frequency and b is connected to the tunneling barrier. The

probability of this tunneling depends exponentially on the tunneling distance from

the hole trap to the interface.
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According to the modelsl3, 24, the rate of charge loss from the oxide, or the rate of

neutralizing of trapped holes inside the oxide is given by the differential equation:

dp(x, t)/dt = -a exp(-bx) p(x, t),

where p(x, t) is the density of charged trapped holes in the oxide.

This equation yields

p(x, t) = p0(x) exp(-a exp(-bx)t),

where p0(x) is the initial distribution of trapped holes inside the oxide as a function of

x, which is a coordinate perpendicular to the oxide-silicon interface. These models

have used the concept of the tunneling front, i.e., the x-position, Xm, of a surface at

which the maximum rate of tunneling is occurring. So, we can obtain this position of

Xm by differentiating the previous equation of p(x, t)/dt with respect to x and setting

the result equal to zero:

X m -" (l/b)ln(at). (DO)

This equation was used in direct calculation of the shift in the threshold potential in

Eqs.(D22) and (D23).

Direct calculation of shift in threshold potential

As is already known, ionizing radiation in MOS devices generates trapped positive

charge in the oxide layer and negative interface states which cause a shift in many

parameters for the MOS device, such as threshold potential, leakage current, noise,

capacitance, etc. To analyze these shifts, we developed a direct calculation, applying

Maxwell's electromagnetic theory.

Though our primary goal is to deal with ionizing radiation, the method is also

applicable to deal with any net charge inside a system, regardless of how the charge

was created. For example, in the case of the theory of the new generation of electrical

charge memories, we can apply this method.

Calculating the shift in the threshold potential, we assume that the processes are

slow enough to apply the quasi-static approach.

Maxwell's equation relates displacement field, D, and density of charge, p,

VD=p.

We assume that the x-axis is perpendicular to the oxide/semiconductor interface, x =

lox at the interface, and x = 0 at the metal/oxide interface. We also assume that the
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charge density, p(x, t), is independent of the two other spatial variables. In this case,

the displacement, D, also depends only on the distance, x, (and time) and is

perpendicular to the interface, i.e., D = D(x, t) and

dE(x, t)/dx = (1/e0e) p(x, t),

where E = ((1/e0E)D and e0 and e are the dielectric constants.

we obtain

X

E(x)- E(0) = (1/a0e)$p(x, t) dx,

0

(D1)

Integrating Eq.(D1),

(D2)

where the integral is the charge inside the oxide layer between x = 0 and the current

coordinate x, per square unit of the interface, i.e., Q(x, t)/S. In this case, the potential
difference can be calculated from:

E = -VV. (D3)

However, a variable electric field creates a variable magnetic field, H, in accordance

with Maxwell's second equation:

VxH=j +e0e3E/ 3t,

where j is electric current.

In electromagnetic theory, instead of Eq.(D3), one must use the following equation:

E = -VV + 3AJ3t, (D4)

where the vector potential, A, defines the magnetic field by the equation:

H = -IV x A],

satisfying the third Maxwell equation: [V x HI = 0 or [V x V x A] = 0. Eq.(D4)

satisfies the fourth Maxwell equation:

[V x E] = -_H/dt, since V x VV = 0.

Taking into consideration the fact that the annealing process is slow from the

electromagnetic point of view, we can neglect the magnetic field using the quasi-

static approach. Eq.(D4) then takes the form:

E(x, t) = -dV(x, t)/dx. (D5)

The net oxide positive charge, Q, is given by:
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lox

Q - SSp(x)(ix,
0

(D6)

where lox is bulk oxide thickness, p(x) is charge density and S is bulk crossection. The

shift in threshold potential AV, due to the net oxide positive charge, is thus given by:

lox

AV = -$E(x) dx, or

0

lox X

AV = -(1/c0c)fdxSp(x', t) dx'.

0 0

(D7)

The equation we have just derived is quite general. It relates only to charge

distribution and may be applied for any method of charge generation and

compensation, for pure annealing, for simultaneous irradiation and annealing and

any kind of charge injection. For example, this equation enables us to investigate the

silicon-nitride-oxide-silicon (SNOS) memory device. Unlike an MOS device, the main

goal is to trap the positive or negative charge injected through the oxide into the

nitride by a positive or negative voltage pulse applied to the gate of the SNOS

transistor. The negative or positive potential shift is associated with a logic "0" or

"1" state, respectively. In this case, we could be interested in as slow annealing as

possible.

In deriving Eq.(D7), we neglected the magnetic field and its influence on the electric

field, i.e., the electromagnetic waves. In order to justify this approximation, we need

to estimate the order of magnitude of the wavelength of the main harmonic,

representing the vector potential as a Fourier integral over a range of frequencies:

A(t) = (1/2n) SA(co) exp(i_t) do),

where A(co) has a maximum at 6oo = 1/tch and decreases to zero rapidly for co<coo and

co>¢zo and tch is the characteristic time, which determines the time scale for

significant changes in A(t).

tithe time scale, as in the case of annealing processes, is on the order of 10-4 sec., the

characteristic electromagnetic wavelength for these processes can be estimated as:

A - c/_ - 3 x 106 cm,

where c is the velocity of light.

Obviously this electromagnetic wavelength is extremely large, and the

corresponding magnetic field can thus be neglected.
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Considerable work has been done to analyze the mechanisms contributing to the

degradation of net charge. Physical models have been derived based on these

mechanisms. The advantage of Eq.(D7) is its possibility to be applied to any

particular mechanism of charge generation and degradation, or even to a

combination ofseveral mechanisms.

Damage Introduction Rate and Annealing Rate for McLean Model

First of all, we make use of Eq.(D7), derived above, calculating the response, AV(t),

the relaxation of buildup of the net charge, not only to describe pure annealing, but

also simultaneous irradiation and annealing.

We apply Eq.(D7) to relate the damage introduction rate, C, to the radiation-induced

net charge, Q.

Suppose the impulse dose duration is much less than the characteristic time,

At< <to. This means that annealing has not started yet and we can obtain

8

AV(ht) = -[C- A ln(1 + At/t0)] 13At = -CDAt = -CAD. (D8)

For a very short impulse dose (10-6 see), we can assume uniformity of charge density

inside the bulk oxide because of the incident character of primary ionization. We

thdn obtain

hV(At) = -CAD = -Qlox/2ea0S, (D9)

where the net charge at time, t, is Q = ploxS.

For large impulse doses, 105 - 106 rad, a saturation effect may occur. Then, the

dependence of the shift in the threshold potential AV, on total dose becomes non-
linear:

5V(At) = F(D).

On the other hand, the total charge, Q, is linearly proportional, with a coefficient, k,

to the effective crossection, o, the total number of atoms, N = nloxS, where n is atomic

density, and the total dose, AD:

Q = konloxSAD. (D10)

By substituting Eq.(D10) into Eq.(D9), we obtain

C = klox2nO/eoe. (Dll)
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The coefficient of proportionality, k, can be determined from independent

measurements and can be calculated theoretically as well.

In Eq.(D8), we assumed a linear response, but linearity of response with dose should

be confirmed and the boundary between the linear and non-linear approach should be

determined, as we have shown in Fig.2.

The general equation (D7) can be used for any particular model of net charge buildup

and i'elaxation, i.e., annealing.

McLeanl3 suggested uniform charge distribution through a thin, 10 - 20 nm oxide

layer near the Si-SiO2 interface, with a sharp front of decreasing charge density

moving from this interface through the bulk oxide to the metal. This model uses the

advantage of the principle of a tunneling front, Xm, the location in the oxide at which

the maximum rate of tunneling occurs.

The distance, x', from the Si-Sio2 interface to the density front is proportional to In(t).

The charge distribution can be presented as a step function (see Fig.14):

p(x, t) =

P0, x' > Xm(t)

0, x' < Xm(t),

(D12)

where, according to Eq.(D0), Xm = (l/b) In(at) or Xm -- X0 In(t/t0), P0 is the charge

distribution at t = 0 and xo is the width of the front.

The general equation (D7) can be used for any model and should be used for the

previously cited McLean model, where the distance between the interface and the

moving front is proportional to ln(t). It is also noted that the model can be applied for

distances not less than 1.5 nm from the interface.

Since ln(t) cannot be used for t = 0, we substitute it with ln(1 + t/to). With this

generalization, we can start from zero distance, x = 0 (or x' = lox), and t - 0. We

thus assume that the front distance, Xm(t) is given by:

Xm(t) -- lox-X0 ln(1 + t/t0), (D13)

the front velocity is:

v = xd(t + to), (D14)

and the constant, xo, will be determined later.

For t> >to,
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Xm(t) = lox -x0 ln(ttt0)), (D15)

v = xo/t, (D16)

and, for t< <to,

v = xdto. (D17)

The last equation states that, for small t, the velocity of the front is constant. On the

othe_ hand, the annealing process, as a tunneling process, depends on the distance

from the interface. This means that x0 is of the same order of magnitude as the

distance between the molecular layers of the crystal. It appears that the annealing

front involves several molecular planes and the space value of the front is likely equal

to x0. Also, to is a time of annealing inside this front, when the distance to the
interface is constant.

In this case, the net charge distribution can be observed in the form (see Fig.14):

p(x, t) = po/{exp[(x-Xm)/X0] + 1}. (D18)

We can also calculate the rate of charge annealing:

dp/dt = Po exp[(x - xm)/xo]/{exp[(x- Xm)/X0] + 1}2 d(xm/X0)/dt. (DI9)

This function has a critical point at x = Xm and

dp(xm)/dt = P0 d(xm/x0)/dt = po[xo/(t + to)]. (D20)

Using a step function for the charge distribution, as in Eq.(D12), we have

I P0, (Xm - x) > > xo
p(x, t) = (D21)

0,(X-Xm) >> X0.

or

I P0, x < Xm
p(x, t) = (D22)

0, X > Xm.

Substituting Eq.(D22) into Eq.(D7) and assuming that Po = pAD, where p is a

coefficient, we obtain

X m X

-_V(t) = -(i/coc):dx$po dx' and

0 0
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AV(t) - -(1/2eoe)p0(Xrn)2, or AV(t) = -(1/2coc)p[1 -xo In(t)]2AD. (D23)

When In(t) < < lox/X0,Eq.(D23) becomes

[AV(t)[ - [C- A In(t)]AD,

where C = (1/2eoc)plox2,A = (i/eoe)ploxxoand C/A - lox/2xo. We can calculate the

total annealing time from Eq.(D23):
t

In(tJto) = lox/X0.

Iflox = 50nm, x0 = 1.Snm and to = 10-4sec, weobtainta = 3.0x 1010sec. For

single-channel (we assume that hole traps can be different types, as we will see later

from the experimental data) annealing, we can derive the equation for R(t):

R(t) = C- A ln(t) + (A2/4C)ln2(t). (D24)

This solution is crucial for long-term annealing. For simultaneous irradiation and

annealing, the third term of Eq.(D24), ln2(t), enables us to extend a description of

annealing beyond the critical time region, ln(tc) = C/A, as in Fig.15 The new critical

time can be calculated from:

ln(tc) = 2C/A. (D25)

Using Eq.(D22) and (D7), we can also relate the change in the threshold potential to

the total initial charge, Q = p01oxS,

AV(t) = -(1/2c0c) Qxm2(t)/loxS, or, assuming uniform charge distribution, to the

charge at time, t:

AV(t) = -(1/2c0_) Q(t) Xm(t)/S, where Q(t) = p0Sxm(t).

Using Eq.(D9), we can obtain for our uniform charge distribution

AV/AVo = Xm2(t)/lox 2, (D26)

where AVo is the initial shift,-(1/2coc)polox 2.

Eq.(D26) gives us the same response function, R(t),

AV/AVo = 1- (2xo/lox)ln(1 + t/to) + (x02/12) ln2(1 + t/to).

For the long-term approximation, we can derive

AV(t) = -(p012/2_0_)[1 - (2x0/lox) ln(t) + (xo2flox 2) ln2(t).
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Simultaneous Irradiation and Annealing

The term ln2(t), in Eq.(D24), which is non-linear with log(t), enables us to extend the

description of radiation response to the case of simultaneous irradiation and

annealing beyond the critical time point, ln(tcl) up to time, ln(tc2) = 2C/A.

We can also easily integrate Eq.(D24) according to Eq.(ll) and obtain a more precise

description of the radiation response for simultaneous irradiation and annealing:

AV/Dt = -(A + C + A2/2C) + (A + A2/2C)in(t)- (A2/4C)ln2(t). (D27)

In this case, the value of the balance time, where equilibrium between the damage

introduction rate and the annealing rate occurs, can be derived, determining the

balance value of the response:

d(AVfl_)dt = -C + A ln(tb)-(A2/4C)ln2(tb) = 0, and

tb = exp(2C/A). The balance value of the response is derived as

AVb = -]_(A2/2C) exp(2C/A). (D28)
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DEVELOPMENT OF THE TEST

Experimentally, annealing at elevated temperatures is known to be a factor which
enables a number of different devices to recover their operating characteristics after

radiation damage faster than at normal temperatures both during and after

irradiation.

It should be noted that, while simultaneous irradiation and annealing are taking

placd, the device parameters will continue to change until an equilibrium condition is

reached between the damage introduction rate and the annealing rate, determining

the constant equilibrium value of the shift in the parameter.

In the foregoing part, we have developed a linear response theory (LRT) to be applied

to predicting the radiation/annealing response, i.e., the deviation of sensitive

parameters, for any type of device which exhibits radiation response and time-

dependent recovery in any parameter, for long-term (several months or years), low-

and high-rate radiation environments. The LRT developed here does not depend on

the device fabrication technology and can predict the equilibrium value of the shift in

any parameter if the response is linear with dose and dose rate. In the other case, we

have developed a non-linear approach, which can make predictions by calculation

and by approximation of data, as shown in Figs.6, 7 and 8.

Thus, to develop a program and short-term (several hours or days) test procedure for

making predictions for long-term annealing, we need to experimentally determine a
number of constants in this theoretical model. We need to construct a new linear

response function (LRF) for the very long-term region. At this point, our LRF can

only give us an estimate of the long-term response. To develop the LRF for the long-

term region, we need to compress the radiation/annealing process from several years

in real time to a few hours or days in the laboratory. This time compression can be

achieved if we subject the device to elevated temperatures.

From these tests at elevated temperatures, we shall determine the temperature

dependence of the constants and the LRF behavior in the very long-term region at

room temperature. Using approximations of radiation response for various dose rates

in the non-linear case and the LRT result, we can make predictions of the very long-

term radiation/annealing response of devices of any technology at any temperature.

1. Compression in time.

As has been shown in many experimental worksl, 10, II, 12, 17, 20, 21, an elevated-

temperature environment enhances annealing processes by decreasing the lifetime of

trapping sites in insulators, such as SiO2, increasing the probability of tunneling

processes and decreasing thermal activation energy for trapping sites for MOS

devices.
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The elevated-temperature technique is therefore a very basic tool for the time

compression of long-term processes for short-term observation in the laboratory.

a) Pure annealing.

As mentioned in the foregoing part, we have chosen to use the shift in threshold

potential, V(t), for MOS ICs as the sensitive parameter, although the LRT method

allov_s us to use any parameter which is affected by radiation.

We then obtain a family of experimental curves per unit dose at various

temperatures of the form:

AV(t)/D = -C + A ln(1 + t/to),

as shown in Fig.16, or in the form from Fig.15:

AV(t)/D = -C + A In(1 + t/to)- (A2/4C)ln2(1 + t/to),

Note that the experimental curves of AV(t) per unit dose at various temperatures

intercept each other at the an ordinate value equal to -C and at an abscissa value

equal to ln(to). In this way, we can determine all the LRT parameters. The

temperature dependence of the parameters can also be estimated from the family of

experimental curves. According to the existing experimental data, we assume that

the parameter A is strongly dependent on temperature.

For the pure annealing case, measurement of the shift of the threshold potential at

large times, i.e., on the "tail" of the curve, is not possible because of limits in the

accuracy of voltage measurements.

b) Simultaneous irradiation and annealing.

In an analogous manner, we can obtain a family of curves of hV(t) and hV(t)/D(t) at

various temperatures, as shown in Fig. 17.

We must explain that the similarity of the curves in Figs.16 and 17 is due to a

theoretical manipulation. The difference between them is that, in Fig.16, AV(t) for
pure annealing is divided by total impulse dose, D = D21t (see Eqs.(4) and (5)), but in

Fig.17, AV(t) for simultaneous irradiation and annealing is divided by instantaneous

total dose, D = D(t) (see Eqs.(13 and (14)). This trick is important because it permits

analysis of experimental data for simultaneous irradiation and annealing

conveniently and directly. To prove this, we can transform any experimental curve of

the shift in the threshold potential for simultaneous irradiation and annealing into

linear dependence on log(t) by dividing the values by the instantaneous total dose(or
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the instantaneous time value if the dose rate is constant), as was done with

experimental data25 and shown in Figs.24 and 25.

In the previous paragraph, one method to determine the LRF parameters was shown.

To determine the LRF constants and their temperature dependence, we also intend to

use the experimentally-determined temperature-dependence curves of AV(t) which

can be observed in Figs.16 and 17 for both pure annealing and simultaneous

irradiation/annealing.

The determination of the LRF constants and their temperature dependence is

necessary because we need:

to estimate the critical region, i.e., the long-term region, where the LRF

changes its behavior and the value of the critical time, tc; we can determine the

value of the critical time graphically by the LRF intersection with the

abscissa;

to determine the "time compression rate" (TCR, the coefficient of time

compression, using critical time values and temperature dependence of the

time for half recovery) and to choose the temperature needed to compress the

time of a test;

- to calculate the values of the required test time at elevated temperatures,

using the TCR;

- to determine the LRF constants for the long-term region by extrapolation of

values of constants determined at elevated temperatures to room temperature;

to determine the LRF for the long-term region at elevated temperatures (the

critical time region, tc, in Figs.16 and 17), then to extrapolate the LRF to room

temperature and calculate the response if the radiation response is linear with

respect to dose and dose rate.

2. Determination of LRF constants

a) Pure annealing.

To determine the constants A, C, and to, we expand Eq.(7) in a power ser:ies:

R(t) = -C + A ln(1 + t/to) = -C + A(t/to)-(A/2)(t/t0)2 + (A/3)(t/to)3- ... (El)

The regions of the curve of Eq.(7), where the terms of this expansion are to be fitted

are seen in Fig.18.
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It was also shown in the foregoing part that we can determine A immediately, since it

is the slope of a straight line, the response function, R(t), plotted vs. ln(t). Assuming

C is constant, the points of interception of the family of R(t) curves at various

temperatures for pure annealing, as shown in Fig.16, gives us the value of ln(to).

Therefore, C and to can be separated and determined from the coordinate of the

interception, [-C - A ln(t0)]. We assume that C is temperature-independent, as the

experimental study22 shows.

The determination of all the LRF constants from the family of curves for pure
}, .

anneahng seems reliable, but errors in measurement of the shift in the threshold

potential in the long-term region can become comparable to the value of the potential

shift itself. Such a difficulty can be solved by using simultaneous irradiation and

annealing data divided by instantaneous dose, as shown in Figs.24 and 25.

Also, as will be shown later, we can determine all the constants from the temperature

dependence of the time for half recovery and the temi3erature dependence of the

critical time.

b) Simultaneous irradiation and annealing

To determine A, C, and to, we expand Eq.(12) in a power series in (tJt0) as follows:

AV/D = -C + [A(t/to)]/2- [A(t/to)2]/6 - [A(t/to)3]/12- ... (E2)

We will obtain a family of experimental LRF curves, as shown in Fig.16, for various

temperatures for both pure annealing and simultaneous irradiation and annealing.

The LRF constants and their temperature dependence will be established.

In order to demonstrate the possibility of determining the LRF constants in this way,

we obtained the experimental data shown in Figs.25 and 26. N- and p-channels of an

RCA CD4007 integrated circuit were given impulse doses of I MeV electrons up to 10

kRads. As a source of electrons (up to 1.6 MeV), we used the 2 MeV Van de Graaff

accelerator of the NASA/Goddard Space Flight Center Radiation Facility at

Greenbelt, MD. Radiation dose was measured with radiochromic films, using a FWT

Technology film reader. Doses are given in Rads-Si. The points in Figs.25 and 26 are

the experimental data and the solid lines represent Eq.(E2).

3. Determination of the time for half recovery, tl/2, for various temperatures

and the "Time Compression Rate" (TCR).

An additional method to determine all the LRF constants, as shown in Fig.19, is to

plot the dependence of the time required for half recovery vs. the reciprocal of

temperature. The time for half recovery is supposed to be the time needed to anneal

half of the quantity of damage in the sensitive parameter in the pure annealing case.
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Experimental data of the time of half recovery vs. reciprocal of temperature are

shown in Fig.19.

According to Eqs.(13) and (6), we can obtain:

tl/2 = (t0tr) 1/2 exp[(C-A)/2A], (E3)

where tl/2 is the time for half recovery and tr is the time at which irradiation ceases.

Using Eqs.(16) and (8), we can estimate the character of the temperature dependence

ofth_ time of balance - the equilibrium time, tb, as follows:

tb = to exp(C/A),

and, if the slope, A, of the response function is equal to b + aT, where a and b are

constants, T is.the temperature and b < < aT,

ln(tb) = In(to) + (C/a)(1/T)and (E4)

In(tl/2) = ln[(t0tr) 1/2 exp(-1/2)] + (C/2a)(1/T). (E5)

Terrell et al.22 have presented experimental data of temperature dependence of the

time for half recovery plotted against the reciprocal of temperature. We can compare

these data to our Eq.(E5). Setting AT = 50oC gives us tl/2/t'l/2 = 10.

To find the equilibrium time, tb, we used the time for half recovery, Eq.(18),

tb "_(tl/2) 2. (E6)

The temperature shift, AT = 50% gives us approximately tb/t'b -- 100.

We can also determine the time for half recovery, tl/2, more conveniently from Eq.(6)

for pure annealing:

tl/2 = to exp(C/2A), or, for A = aT,

tl/2 = to exp[(C/2a)(lfI')]. (E7)

We obviously have experimental confirmation of LRT efficiency, comparing Eqs.(E7)

and (E5) with the experimental result22.

For a practical test procedure, it would be helpful to determine the time required for

one-third recovery, etc.

The '*rime Compression Rate" (TCR) for the critical-equilibrium time region could be

determined from the extrapolation as is shown in Fig.19. We can thus calculate the
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required test time at various temperatures to simulate the flight

calculation is done using Eqs.(E7) and (E4) as follows, ifT'>T:

tb(T) = tb(T')[tl/2(T)/tl/2(T')]2 or

tb(T) - tb(T')exp{[(T-T')fIT]C/a],

i.e., time values in the long-term region can be calculated as follows:

From this equation,

t(T) = t(T')exp(C/a)(lfr- lIT').

TCR = exp[(C/a)(1/T- lfr')].

time. The

(E8)

4. The test procedure

The test procedure is a product of the linear response theory developed here applying

the procedure for determination of LRF constants and the non-linear approach (as in

Figs.7, 8, 9 and 10). The main goal of this program is to develop short-term (several

hours or days) test procedures, accelerating annealing at elevated temperatures, for

linear radiation response with respect to dose and dose rate, or increasing the dose

rate for non-linear response with respect to dose rate, for making predictions for long-

term (several months or years) annealing in space.

In order to conduct the test, the test procedure program would consist of:

a) Determination of all constants of the LRF, taking into account the" form of the

LRF equation, R(t) = -C + A ln(1 + t/to) (or a sum of similar equations, as we will

show later with experimental data, remembering the "tail", -(A2/4C) ln2(1 + t/to),

from Eq.(D19), which is sufficient for the long-term region). The LRF constants

are:

the characteristic time of annealing, to,

the intensity of annealing, A, and

the damage introduction rate, C,

which are obtained both from experimental data of pure annealing and

simultaneous short-term irradiation and annealing data. To calculate the value

of equilibrium, i.e., the value of the long-term region, when t> >to, we can apply

the complete equation, Eq.(D19):

R(t) = -C + A In(t/to)-(A2/4C) In2(t/to).
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b) Calculations performed in order to estimate the instant in time (the "critical

time", tc = to exp(C/A)), at which the annealing begins to change its behavior. For

example, pure annealing of the shift in the threshold potential has been observed

to deviate from linearity with respect to the logarithm of annealing time.

The same calculations determine when simultaneous irradiation and annealing

can be expected to reach equilibrium:

tb = to exp(C/A) or tb = to exp(2C/A) from Eq.(D21).

c) The value of the balance of the shift in the sensitive parameter, for example,

the shift in the threshold potential:

AV = -ADto exp(C/A) (the equilibrium value) or, more precisely,

i

AV = -D(A2/2C)to exp(2C/A), would be estimated.

d) Extrapolation. Since thermal time compression is applied, the test data would

be obtained at high temperatures. These data would be extrapolated to room

temperature for making predictions by using the temperature dependence of the

LRF constants.

Since the elevated-temperature technique enables us to compress the duration of

the radiation test from several years at room temperature to a few hours or days

at elevated temperatures, the experimental radiation/annealing occur as a family

of experimental curves of the shift in the sensitive parameter, for example, in the

threshold potential per unit dose at various temperatures, in the form:

AV(t)/D = -C + A ln(1 + t/to)and

AV(t)fl_)t = A(1 + t0:t)In(1 + t/to)-(A + C)or, in complete form:

AV(t)/D = -C + A ln(1 + t/to) -(A2/4C) In2(1 + t/to) and for t> >to,

where

AVfl_)t = -(A + C + A2/2C) + (A + A2/2C)ln(t/to)-(A2/4C)ln2(t/to),

A, C and to are the constants of the LRF and dose rate D = dD/dt,

for both pure annealing and simultaneous irradiation and annealing.

Thus, this practical procedure for development of the radiation damage/annealing

test consists of the following steps in order:

- to determine dose limit for linearity of IC radiation response with respect to

dose and dose rate;
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- to obtain the radiation damage/annealing data at various elevated

temperatures for the short-term and long-term regions;

- to determine the form of the LRF, the LRF constants and their temperature

dependence for the short- and long-term regions;

to estimate the long-term region, i.e., the theoretical and experimental

value of the critical time, te, in the long-term region for various

temperatures, when the LRF changes its behavior; we expect to obtain a

value equal to to exp(C/A);

to determine the theoretical and experimental value of the time for half

recovery, tl/2, for various temperatures; we expect to obtain a value equal to

to exp(C/2A) and a linear dependence on the reciprocal of temperature

which leads to a reasonably linear temperature dependence of the constant

A;

to determine the "time compression rate" (TCR, the coefficient of time

compression) for the long-term region, i.e., the critical time region, and to

choose the temperature to compress the test time; we expect to confirm the

theoretical quadratic dependence of the critical or balance time, tc =

(1/to)(tl/2) 2 which, as was shown experimentally gives us a TCR equal to

100 when AT = 50oC22;

- to Calculate the TCR for required test time to simulate spaceflight time;

- to calculate the radiation response for the required test time;

to determine the IC's response under increased dose rate (for shortened test

time) for various dose rates if the response is non-linear with dose rate;

to extrapolate the values of the radiation response at the increased dose

rates (see Fig.10), to the space dose rate.

This practical program enables us to construct the annealing test to make predictions

of radiation response of MOS devices for long-term (months and/or years) operations.

EXPERIMENTAL APPROACH

We have good evidence that our approach using LRT is more than just theory. We

can actually obtain the necessary experimental data, introduce our linear response

theory, evaluate the LRF constants and predict the radiation response by

extrapolation of the values of the LRF constants from elevated temperatures to

normal room-temperature operation.
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In observing the experimental results and theoretical models, we see that we must
describe the process of annealing through tunneling in a more complex way than
often theoretically described. The experimental results point to at least two different
tunneling models. We can actually presume many more channels of annealing.

In Fig.21, we can see the experimental results of pure annealing.

It is clear, especially for 150oC, that we have at least two annealing channels:

' 1) the first, from the beginning ofthe curve up to 1 sec.;

2) the second, from 1 sec. to the of measurement of the experimental region.

We believe that annealing is taking place through two tunneling modes, not one as in

. the McLean model. As shown in Fig.13, the tunneling modes are:

(i) from electron levels above the Si conduction band to a temperature-dependent

excited (because of the parallel spin alignment of the electrons) triplet hole trap state

with energy about I - 1.35 eV above the Si conduction band, and

(ii) from levels below the Si valence band to a temperature-dependent ground

(singlet, because the two electron spins are antiparallel in the same orbital) hole trap

state with energy about 3 - 3.5 eV above the SiO2 valence band (with 9 eV SiO2

bandgap).

We may also have thermal annealing by thermally excited electrons from the valence

band of the oxide25. We can therefore assume many more channels of annealing and

our main approach using LRT does not depend on it, as we will explain later.

From these experimental data, we determined the temperature dependence of the

quantity of hole traps distributed between the excited and ground states, i.e., the

value of the LRF constants, Cl', C2', AI, A2 and their temperature dependence as seen

in Fig.22. The critical time and time compression rate temperature dependence are

shown in Fig.23 and the form of the LRT functions (Fig.21) is given by:

R(t) = Rl(t) + R2(t), where Rl(t) = -C'I + A1 ln(t)/[1 + (t/tc)2],

R2(t) = -C2' + A2 ln(t).

We assume that C' ~ N, where N is the density of charged states. According to the

theoretical thermal model26, we have:

N = k(T)3/2,

where k is a coefficient and T is temperature (oK). Comparing out results with this

model, we observe good agreement, as seen in Fig.22.
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We have assumed that the time units are in seconds. For convenient treatment of the

experimental data and easy determination of the initial shift, we use a new term, the

"primary time ", t', equal to 10-4 seconds,

Rl(t') = -Cl' + A1 ln(t') = -C1 and

R2(t') = -C2' + A2 ln(t') = -C2.

Using such a technique, we can treat any experimental data obtained at elevated

temperatures for both pure annealing (for an impulse dose) and simultaneous

irradiation and annealing (dividing experimental values by instantaneous total

dose), derive equations, determine constants, time reduction coefficients and required

test time for elevated temperatures. Then we can make predictions of annealed-

equilibrium radiation damage for spaceflight time values directly from the

experimental curves or calculate the required value using the equation for this time

region.

Despite the seeming complexity in dealing with many annealing channels, the LRT

approach can manage each portion of the annealing curve if the radiation response is

linear with respect to dose. Principal attention should be directed to relating the

portion of the curve at one temperature to that at another temperature in order to

determine the LRF constants for the latest or necessary part of the annealing curve

and to calculate the value of the radiation response,i.e., the shift in the threshold

potential, for a certain time value and at the spacecraft temperature corresponding to

the related value at the elevated test temperature.

Let us examine the experimental data obtained at room temperature (25oC) and at

elevated temperatures, i.e., 75oC, 125oC and 150oC, which are shown in Fig.21. We

can immediately determine at least two straight line portions of each curve and the

LRF constants. Fortunately, we can also see that the annealing at 150oC is almost

complete. As can be seen, the annealing at the highest temperature is nearly

complete at 103 seconds. The annealing for the corresponding segment of the curve at

125oC would require 109 seconds to go to completion, or close to 30 years. The result

of the treatment of the experimental data of the same segment of the curves for 25oC

and 75oC is less reliable because of a lack of statistics, but the approximate value of

the time for completion of annealing would be about 1016 seconds. As is shown, the

time interval is significant for any long-term calculations. Thus such experimental

data can give us the law ofapproximation for the LRF constants (Fig.22) and the time

compression rate (Fig.23). Knowing the spaceflight time, we can calculate the test

time for elevated temperatures, choose the right time region and the essential part of

the annealing curve. We can then determine the value of the shift of the parameter

for the chosen time at the elevated temperature and approximate this value to the

value at room temperature, using the previously-obtained LRF curves for various

temperatures. We can directly calculate the prediction, using the the curves of the

temperature dependence of the LRF constants, or the temperature dependence of the

shift value. We can also determine the shift in the threshold potential using the
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curve of the shift at the elevated temperature and the decreased value of the required

test time from the graph.

Since the accuracy of the threshold potential measurement at the low-voltage region,

where annealing is almost complete is low, we can use the experimental data for

simultaneous irradiation and annealing divided by instantaneous dose, as shown in

the foregoing theoretical part. Such an operation yields a similar straight line with

respect to log(t) or a sum of such lines, as lines of pure annealing. Examples of the

expei-imental curves divided per instantaneous dose are shown in Figs.24 and 25.

The treatment of such experimental data would be almost the same as for pure

annealing.

Although the experimental data are not statistically complete and were obtained for

._only four temperatures, this approach has nevertheless given us the form and

constants of the LRF for long-term regions close to 1016 seconds. These efforts to

make predictions will be continued with more statistically complete experimental
data.

CONCLUSION

This paper is a report of three years' effort in which we have seen great success in

applying the proposed linear response theory to make predictions of the radiation

response of ICs for long-term operation in space. The first experiments using the test

procedure developed with LRT to obtain experimental data showed us the usefulness

of the technique to produce predictions for very long-term operation (1016 sec.), at

least for this device. The approach for making predictions of radiation response

which is non-linear with respect to dose rate has also been demonstrated.

The theoretical result, based on the theoretical models of basic processes in the IC

during irradiation, gives the complete equation of the radiation response, Eq.(D19),

which could hardly be determined experimentally.

Although the LRT could not be applied for the non-linear case, we suppose that it can

be used in the low-dose-rate space radiation environment along with our capability to

determine the additional difference due to the non-linear effect. The quasi-linear

approach and the method of extrapolation of data will help to determine this
difference.

In addition, we should note:

1. different devices have different characteristics of radiation damage and annealing

curves, but the linearity of the response with log(t) on each part of the curve is a

permanent characteristic; the LRT can be easily applied for all such devices;
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2. observing the theoretical models, we were interested only in hole-trapped charge;

we did not concern ourselves with radiation-induced interface electron-trapped

charge, because this charge buildup is not temperature-dependent. However, the

LRT enables us to apply the LRF method in this case, if the linearity with dose is
observed.

The experimental program to obtain the prediction of radiation damage for long-term

space operation, using the LRT method LRT and the non-linear approach to different

devites will be applied in the CRRES Ground Simulation Experiment.
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